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Introduction 

 

Global agricultural production is currently facing immense pressures. While global food demand 

is rising, increased frequency and severity of extreme weather events such as flooding, droughts, 

and heatwaves along critical levels of soil degradation – imposed by agricultural management 

practices such as intensive tillage, low crop diversity or crop residue removal – pose a significant 

challenge to meet this demand. Conservation farming practices – including reduced tillage, a 

diversified crop rotation or the implementation of cover crops – have emerged as promising tools 

to increase soil health and fertility, thus counteracting degraded soils and the inherent risk of 

compromising crop production. However, the effects of conservation farming on crop yields are 

not always consistent, and yield declines have been reported in scientific literature, particularly 

in the initial years of adoption. 

While the sustainability of farming systems is often evaluated based on soil health advances, 

broader environmental impacts of farming systems are important to consider. For example, a 

farming system that maintains strong soil health and high yields but depends heavily on carbon-

intensive inputs (such as synthetic fertilizers and fossil-fuel energy) cannot be considered 

sustainable in the long-term. So far, there exist only a few studies that have evaluated crop yields 

and soil health advances alongside greenhouse gas emissions and the use efficiency of key 

elements such as nitrogen. 

In this project, we compare the effect of conventional and conservation farming practices on soil 

health, crop yields, greenhouse gas emissions and nutrient-use efficiencies at a long-term 

experimental site in Tulln, Lower Austria. Established in 2015, the experimental site comprises 

two distinct farming systems. The first is a conventional system, defined by conventional tillage 

to a depth of 25 cm, a simplified crop rotation, and minimal incorporation of cover crops. The 

second is a conservation system, which employs shallow tillage limited to 5 cm, features a more 

diversified crop rotation, and makes extensive use of both cover crops and intercrops. Eight years 

after implementation, we calculated (i) a soil health index based on thirteen physicochemical and 

biological parameters, (ii) field-scale greenhouse gas emissions using the CoolFarm-Tool, and 

(iii) aboveground biomass as well as grain nitrogen-use efficiency. These calculations were 

complemented by eight-year data on crop yield and aboveground biomass to assess 

conservation farming advances and potential soil health–crop yield trade-offs. 
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Methodology 

 

Experimental Site and Design 

The study was conducted at a long-term field experiment established in 2015 in Tulln, North-

Eastern Austria. The site features a dry-temperate climate and a Chernozem soil with loamy clay 

texture and neutral pH. Two farming systems were compared: (i) conventional farming, with 

tillage to 20–25 cm, a simple four-year crop rotation (sugar beet–winter wheat–maize–winter 

wheat), and minimal use of cover crops; and (ii) conservation farming, with shallow tillage at 5 

cm, an extended eight-year rotation including legumes and oilseeds, and extensive use of cover 

and intercrops. Both systems received identical fertilization and plant protection according to 

national guidelines. The experiment followed a randomized block design comprising 24 large 

plots, in which each crop of the respective rotations was grown every year in duplicate. 

Soil Sampling 

Soil samples were collected in June 2024 from selected plots where identical main crops were 

present in both systems (sugar beet, winter wheat 1, maize, winter wheat 2). Samples were taken 

at 0–15 cm and 15–30 cm using a soil corer. Five subsamples per plot were pooled to create 

composite samples. After sieving (<2 mm), samples were either air-dried or stored at 4 °C until 

analysis. Undisturbed cores (100 cm3) were taken for bulk density determination. In total, 64 soil 

samples were obtained. 

Aboveground Biomass and Yield 

Aboveground biomass of winter wheat, maize and sugar beet was harvested at physiological 

maturity on defined sampling areas. Grain or seed samples were dried before weighing, while 

sugar beet yield was recorded as fresh root mass. 

Laboratory Analyses 

Soil analyses included pH, total C and N, inorganic C (for SOC calculation), microbial biomass C 

and N (fumigation–extraction), oxidizable C (KMnO4 method), mineralizable N (anaerobic 

incubation), aggregate stability (wet sieving), and potential activities of key hydrolytic enzymes 

involved in C, N and P cycling (fluorometric microplate assay). SOC and total N pools were 

calculated using the equivalent soil mass approach. 

Soil Health Index 

A Soil Health Index was calculated using a Principal Component Analysis (PCA)–based minimum 

data set approach. Thirteen soil parameters representing physical, chemical, and biological 

functions were standardized and analyzed by PCA. Indicators with the highest factor loadings 

were selected, scored on a 0–1 scale, weighted by their contribution to explained variance, and 

summed to obtain the SHI. 
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Carbon Footprint Assessment 

Greenhouse gas emissions were estimated using the CoolFarm Tool (v2.11.0). Model inputs 

included crop yields, fertilizer and pesticide use, cover crop management, field operations, and 

fuel use. Emissions were calculated for each crop based on average management practices 

across 2015–2022 to compare system-level carbon footprints. 

Nitrogen-use efficiency 

We further evaluated aboveground biomass and grain nitrogen use efficiency according to Moitzi 

et al. (2020)1, where: 

i. NUEAboveground biomass (g g-1) = Aboveground biomass (kg ha-1) / Nitrogen supply (kg ha-1) 

i. NUEGrain (g g-1) = Grain yield (kg ha-1) / Nitrogen supply (kg ha-1) 

and 

ii. Nitrogen supply (kg ha-1) = NFertilizer (kg ha-1) + NO3-NBeginning (kg ha-1) 

 

NFertilizer refers to the amount of fertilizer added to the respective crop, whereas NO3-NBeginning refers 

to the amount of N in the soil at the beginning of the vegetation period. NO3-N was extracted with 

a 1M potassium chloride solution, subsequently colored with Griess reagent and vanadium(III)-

chloride solution, and absorption was measured at 540 nm using an EnSpire® Multiplate reader 

(Perkin Elmer, USA)2. Yield, aboveground biomass and mineral nitrogen data for winter wheat 

(WW) and maize from the years 2015-2019 were used for the evaluation of aboveground biomass 

and grain nitrogen-use efficiency.  

Statistical Analysis 

Data were checked for normality and homogeneity of variance and log-transformed when 

required. Differences in crop yields were assessed using one-way ANOVA. Soil properties and SHI 

were evaluated using MANOVA with farming system, crop type, and soil depth as factors, 

followed by Tukey post hoc tests when applicable. GHG emissions between systems were 

compared using the Mann–Whitney U test.  

For both aboveground biomass and grain nitrogen-use efficiency (g g-1), we used a univariate 

ANOVA with system (conservation, conventional), crop type (winter wheat, maize) and season 

(2015-2019) as main factors. Significant differences between years were evaluated using post-

hoc Duncan tests. Statistical significance was defined as p < 0.05. 

 

A detailed description of the methods can be found in the attached publication. 

 
1Moitzi et al. (2020). Efficiency of mineral nitrogen fertilization in winter wheat under Pannonian climate conditions. Agriculture, 10(11), 

541. 
2Pai et al. (2021). Determination of nitrate in natural waters by vanadium reduction and the griess assay: reassessment and optimization. 

ACS ES&T Water, 1(6), 1524-1532. 
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Results 

 

Across the full experimental period (2015–2022), conservation farming did not result in overall 

yield losses (Figure 1). Nonetheless, yield differences between the two systems occurred in 

specific years. Notably, sugar beet yields were significantly higher under conservation farming in 

2017 and 2018, coinciding with the severe drought conditions experienced in Central Europe 

during those years. This suggests that conservation farming systems may be show a higher 

resistance towards environmental stresses, resulting in higher crop yield levels. 

 

Figure 1. Crop yield (in Mg ha−1) of (a) winter wheat 1 (Ww1), (b) winter wheat 2 (Ww2), (c) Maize and (d) sugar beet 
(Sbeet) in a conventional (yellow dots and bars) and conservation (green dots and bars) farming system from 2015 to 
2022. Standard errors show ± SD, and significant differences between farming systems within each year are indicated 
(*p < 0.05; †p < 0.1). Bars on the right-hand side display the average crop yield for all eight cropping seasons. 
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We also assessed a range of soil health indicators related to soil structure, soil organic matter, 

and microbial-driven carbon-, nitrogen-, and phosphorus-cycling. The MANOVA analysis showed 

no significant differences in SOC – a key soil health indicator – between the two farming systems. 

 

Figure 2. Conservation farming effects on soil health parameters related to (a–e) carbon cycling, (f–j) nitrogen cycling, 
(k) phosphorus cycling and (l) aggregate stability. Given is the mean ± SD, and asterisks above bars indicate significant 
differences between management systems (*p < 0.05; **p < 0.01; ***p < 0.001) as revealed by multivariate analysis of 
variance. EOC, extractable organic carbon; Oxidizable C, KMnO4-oxidizable carbon; MB-C, microbial biomass carbon; 
C-acquisition, potential activity of carbon-acquiring enzymes; SOC, soil organic carbon; TDN, total dissolved nitrogen; 
Mineralizable N, mineralizable nitrogen from anaerobic incubation; MB-N, microbial biomass nitrogen; N-acquisition, 
potential activity of nitrogen-acquiring enzymes; TN, total nitrogen; P-acquisition, potential activity of phosphorus-
acquiring enzymes. 
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More sensitive indicators of soil health revealed clearer and more immediate responses to the 

shift toward conservation farming than soil organic carbon alone (Figure 2). Oxidizable carbon, a 

widely used indicator of the labile and microbially available carbon pool, decreased under 

conservation farming. In contrast, microbial biomass carbon increased significantly. These 

opposing trends suggest that conservation management may stimulate microbial growth and 

activity, potentially leading to higher biological demand for easily oxidizable carbon. 

Soil health parameters related to nitrogen cycling were, for the most part, positively influenced 

by conservation farming. Total nitrogen stocks were higher under conservation management, and 

labile nitrogen fractions – including total dissolved nitrogen and microbial biomass nitrogen – 

showed significant increases. These results indicate an improved capacity for nitrogen retention 

and biological nitrogen cycling in the conservation system. Carbon- and nitrogen-acquisition did 

not differ between the two management systems, suggesting that microbial nutrient demand for 

carbon and nitrogen was relatively stable across treatments. However, potential activities of 

phosphorus-acquiring enzymes were lower under conservation farming compared with 

conventional farming, potentially reflecting differences in phosphorus availability, microbial 

community composition or substrate quality. 

In addition to management effects, crop type had a highly significant influence on nearly all 

evaluated soil health indicators (Figure 3), with the exception of carbon- and phosphorus-

acquisition enzyme activities and soil organic carbon stocks. The strongest differences were 

observed when comparing winter wheat with maize and sugar beet. Winter wheat plots 

consistently exhibited higher microbial biomass carbon and nitrogen, higher nitrogen-acquisition 

activity, and markedly improved aggregate stability, reaching differences of up to 60–70% relative 

to maize and sugar beet plots. Conversely, extractable organic carbon concentrations were 

higher in maize and sugar beet plots, indicating an accumulation of soluble or partially 

decomposed organic compounds under these crops. 

Overall, these findings highlight that while some soil properties respond slowly to management 

changes (e.g., soil organic carbon), others – particularly microbial and nitrogen-related indicators 

– are more sensitive and can detect early transitions in soil functioning under conservation 

agriculture. They also demonstrate that crop type plays a major role in shaping soil biological and 

structural properties, sometimes to a greater extent than management system alone. 
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Figure 3. Soil health parameters related to (a-e) carbon cycling, (f-j) nitrogen cycling, (k) phosphorus cycling and (l) 
aggregate stability for four different crops (Maize; Sbeet, sugar beet; Ww1, winter wheat 1; Ww2, winter wheat 2) across 
both management systems and soil depths. Given is the mean ± SD, and different letters above bars indicate significant 
differences between crop types (P<0.05) as revealed by post-hoc Tukey tests within the multivariate analysis of 
variance. Abbreviations are similar to Figure 2. 
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To assess overall progress in soil functioning, we integrated all measured indicators into a soil 

health index. PCA identified microbial biomass nitrogen, mineralizable nitrogen, soil organic 

carbon, and phosphorus-acquisition as the key variables driving the first four principal 

components. Based on these indicators, the subsequent MANOVA showed a significant 

improvement in soil health under conservation farming. Overall, the soil health index increased 

by 6.84% compared with conventional management. 

 

Figure 4. (a) The effect of agricultural management (conservation vs. conventional), crop type (Maize; Sbeet, sugar 
beet; Ww1, winter wheat 1; Ww2 winter wheat 2) and soil depth (0–15 and 15–30 cm) on the soil health index. Given is 
the mean ± SD, and different letters above or beside bars indicate significant differences (p < 0.05) revealed by analysis 
of variance; (b) explained variance of the four parameters used for the soil health assessment as revealed by principal 
component analysis; (c) results of a multivariate analysis of variance to evaluate the effect of management, soil depth 
and crop type as well as interactions thereof. Main effects are shown in (a) on the right-hand side. P-acquisition, 
potential activity of phosphorus-acquiring enzymes; SOC, soil organic carbon, replenishable N, mineralizable nitrogen 
from anaerobic incubation; MB-N, microbial biomass nitrogen. 

The soil health index was also strongly influenced by crop type. Both winter wheat crops (Ww1 

and Ww2) showed significantly higher soil health index values than maize and sugar beet. 

Although the soil health index generally declined from topsoil to deeper layers, this pattern was 

only evident for the winter wheat plots, likely reflecting differences in root distribution and 

architecture. These findings highlight crop type as a major driver of soil health – often exerting a 

stronger influence on indicators such as microbial biomass, nitrogen-acquisition, and aggregate 

stability than the farming system itself. This underscores the need to account for crop-specific 

effects when evaluating soil health in agricultural systems. 
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We applied the CoolFarm-Tool to assess the impact of conservation farming on greenhouse gas 

emissions. Globally, agriculture contributes ca. 25% to overall emitted greenhouse gas 

emissions. This is however largely region- and country-specific. According to the climate 

protection report of the Environmental Agency Austria (2024), agriculture contributes ca. 12.2% 

(7.8 Mio t CO2-eq; with emissions trading) or 19.0% (without emissions trading) to Austria´s 

greenhouse gas emissions in 2024. Based on the total area of agricultural land in Austria (i.e., 2.57 

Mio. ha), this results in greenhouse gas emissions of ca. 3000 kg CO₂-eq ha-1. Overall, rumen 

fermentation accounts for the majority of greenhouse gas emissions (ca. 4 Mio t CO2-eq), 

fertilization of arable soils (ca. 1.8 Mio t CO2-eq), organic fertilizer management (ca. 1.3 Mio t CO2-

eq) and direct energy use (ca. 0.9 Mio t CO2-eq). In addition to improvements in soil health, the 

conservation farming system showed significantly reduced greenhouse gas emissions. While the 

conventional system emitted 1,681 ± 72 kg CO₂-eq ha-1, conservation farming reduced emissions 

to 959 ± 256 kg CO₂-eq ha-1, corresponding to a 43.4% reduction. 

 

Figure 5. Greenhouse gas emissions (in kg CO2-eq ha−1) of a conservation and a conventional farming system for a 
whole crop rotation period (8 years) for (a) each individual sector, (b) for the whole management system and (c) for 
each individual crop in the respective farming system (Sbeet, sugar beet; Ww, winter wheat). Given is the mean ± SD, 
and different letters above bars in (b) indicate significant differences (p < 0.05) between management systems as 
revealed by the Mann-Whitney U test. 
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The largest reductions in greenhouse gas emissions were achieved through reduced soil tillage (-

222 kg CO₂-eq ha-1, 33.3%) and decreased fertilizer-related emissions (-121 kg CO₂-eq ha-1, 30%) 

due to the diversified crop rotation. In particular, the cultivation of soybean and faba bean 

reduced the need for mineral fertilizers, either directly or via positive pre-crop nitrogen effects 

typical of legumes. Conversely, the greater share of cover and intercrops in the conservation 

system increased greenhouse gas emissions by 204 kg CO₂-eq ha-1 (84%). Incorporating legume 

crops had a strong mitigating effect on overall emissions, with faba bean and soybean 

contributing -163.7 and -190.7 kg CO₂-eq ha-1, respectively, highlighting their dual role in nitrogen 

supply and reducing the environmental impact of farming systems. 

 

Finally, nitrogen-use efficiency of aboveground biomass and grain was evaluated. No significant 

differences were observed between conservation and conventional farming (Figure 6). 

 

Figure 6. Differences in (a-c) aboveground biomass and grain (d-f) nitrogen-use efficiency (NUE) between farming 
systems (a, d), crop types (WW, winter wheat) (b, e) and crop year (c, f) for the years 2015-2019. Given is the mean ± SE, 
and different letters above bars indicate significant differences between management systems, crop type or year 
(P<0.001) as revealed by univariate ANOVA and post-hoc Duncan tests. 
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As with other measured parameters, nitrogen-use efficiency varied strongly between crop types 

and seasons. Maize showed significantly higher aboveground biomass and grain nitrogen-use 

efficiency compared with winter wheat. This aligns with known physiological differences between 

the crops: maize typically has higher nitrogen uptake capacity and greater biomass accumulation 

efficiency, partly due to its C4 photosynthetic pathway. In contrast, winter wheat exhibited lower 

NUE, which may reflect greater sensitivity to nitrogen timing or environmental conditions during 

its longer growth period. Overall, the observed nitrogen-use efficiency for winter wheat 

corresponded well with global estimates of ca. 30-35%3. 

Since nitrogen-use efficiency comparisons between management systems were limited to these 

two crops, including additional crops from the rotations could influence the results. Interannual 

differences were largely driven by pedo-climatic conditions. For instance, severe droughts in 

Europe during 2015, 2017, and 2018 likely contributed to the lower nitrogen-use efficiency 

observed in 2015 and 2018. Clearly, further research is needed to disentangle the specific pedo-

climatic factors affecting nitrogen-use efficiency in temperate arable systems. 

 

 

Conclusions & Outlook 

 

This project demonstrated that adopting conservation farming can significantly improve soil 

health and reduce greenhouse gas emissions without compromising crop yields or nitrogen-use 

efficiency. Yield levels remained largely stable over the 8-year experimental period. Soil health 

improvements were particularly pronounced for nitrogen-related parameters and dynamic, 

microbially-driven properties such as microbial biomass carbon and nitrogen and phosphorus-

acquiring enzyme activity, whereas soil organic carbon – a widely used soil health indicator – 

showed little change. 

Crop type often had a stronger influence on soil health than farming system, highlighting that crop 

choice is as important as management measures like reduced tillage or cover/intercropping. 

Simple, easily implementable measures – such as shallow tillage, diversified rotations, and 

increased cover crop/intercrop use – offer substantial potential to enhance temperate cropping 

systems. These practices not only improve soil health but also represent effective adaptation and 

mitigation strategies under changing climatic conditions, thereby supporting sustainable future 

crop production in the long-term. 

 
3Omara et al.  (2019). World cereal nitrogen use efficiency trends: review and current knowledge. Agrosystems, Geosciences & Environment, 

2(1), 1-8; Raun & Johnson (1999). Improving nitrogen use efficiency for cereal production. Agronomy journal, 91(3), 357-363. 
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Overall, this project provided valuable insights into the potential of conservation farming in one 

of the key agricultural zones in Austria. From these results, several research questions arose that 

require further investigation in the future. One of the most pressing questions is the different 

development of carbon and nitrogen fractions with conservation farming. While most nitrogen 

fractions increased significantly under conservation farming, carbon fractions did not 

correspond. Since soil carbon and nitrogen are stoichiometrically rather constrained, it remains 

an open question why soil carbon lags behind in its response to management change. Since soil 

health is mainly driven by microbial-mediated processes, future studies should aim to further 

evaluate the concept of the soil microbial carbon pump4. This would include measurements of 

microbial growth, microbial necromass and different soil organic carbon fractions. 

While this project clearly focused on carbon and nitrogen, covering several fractions of differing 

availability, investigating soil phosphorus would be another important next step. In this study, we 

could show that phosphorus acquisition was significantly higher under conventional farming. 

This could indicate a state of increased relative phosphorus limitation of the residing soil 

microbial community, which could have consequences for soil microbial biomass formation, and 

consequently soil organic carbon accrual5. However, this requires further verification using direct 

measurements of growth. 

Another aspect that requires further investigation is the strong leverage of crop type for most of 

the evaluated soil health parameters as compared to management system. This could only be 

identified due to the unique structure of the experiment, i.e., that all crops of the respective crop 

rotations are grown in every vegetation period. This has strong implications for soil health. First, 

farmers have a strong leverage to improve soil health by adjusting their crop rotation. Future 

studies should thus in-depth evaluations of crop-type effects on soil health. Second, future soil 

health assessments (as e.g., outlined in the Soil Monitoring Law of the European Commission) 

have to consider these strong crop-specific effects on soil health when evaluating soil health of a 

given field, a management system, etc.  

Further, while the investigation of a full 8-year crop rotation already gave valuable insights, we 

require a better understanding of real long-term effects of conservation farming. Therefore, it 

would be critical to consistently evaluate this experiment over decades. 

 

 

 

 
4Liang, C., Schimel, J. P., & Jastrow, J. D. (2017). The importance of anabolism in microbial control over soil carbon storage. Nature 

microbiology, 2(8), 1-6. 
5Tang et al. (2025). Soil carbon sequestration enhanced by long-term nitrogen and phosphorus fertilization. Nature Geoscience, 1-9. 
5Kirkby et al. (2014). Nutrient availability limits carbon sequestration in arable soils. Soil Biology and Biochemistry, 68, 402-409. 
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Achieved milestones 

 

We have successfully published our manuscript entitled ‘Soil Health, Crop Yield and Carbon 

Footprint Trade‐Offs Between Conservation and Conventional Farming: A Case Study’ in the 

European Journal of Soil Science (see Appendix). The collaboration and the publication of this 

manuscript was highly appreciated by all project partners, and several new ideas arose from this 

research. 

Further, our research results were made public to a broader audience with an article published 

in Der Pflanzenarzt (08/2025) entitled ‘Langzeitversuch: Die Vorteile konservierender 

Bewirtschaftung. Verbesserte Bodengesundheit und CO2-Fussabdruck, Ertrag gleich’ (see 

Appendix). In addition, the project was mentioned in a special issue of the BOKU-managed 

magazine CAS as an example for high-quality research in the field of sustainable agricultural 

management conducted at BOKU University (see Appendix). 

At the 65th Conference of the Society for Crop Science (September 23-25, 2025) at the University 

of Halle-Wittenberg, Univ. Prof. Dr. Hans-Peter Kaul presented the results of this project (‘Yields, 

Soil Health and GHG Emissions in a Conventional vs. Conservation Farming System’). 

Golo Gotthalmseder, the Master student who was employed through the project, has continued 

working in our research group after finishing the laboratory work and is currently in the final stage 

of his Master thesis. 
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Appendices 

 

• Scientific publication 

Rosinger, C., Gotthalmseder, G., Bodner, G., Keiblinger, K.M., Forstner, S. J., Sandén, T., & 

Ferretti, G., Prebibaj, M., Neugschwandtner, R.W. & Kaul, H.-P. (2025). Soil Health, Crop Yield and 

Carbon Footprint Trade‐Offs Between Conservation and Conventional Farming: A Case Study. 

European Journal of Soil Science, 76(5), e70194. 

 

• Article in a non-scientific journal 

Rosinger, C. & Kaul, H.-P. (2025). Langzeitversuch: Die Vorteile konservierender Bewirtschaftung. 

Verbesserte Bodengesundheit und CO2-Fussabdruck, Ertrag gleich. Der Pflanzenarzt, 08/2025. 

 

• Short Contribution 

Boden im Fokus: Forschungsansätze für eine zukunftsfähige Landwirtschaft. CAS Newsletter, 

16/2025. 

 

• Invoices 

 

• SAP statement 

Note: The Rectorate has erroneously taken an overhead from the project, as can be seen 

in the SAP statement. We are currently clarifying this. 
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ABSTRACT

Transitioning towards soil health- oriented farming systems is fundamental to mitigate future challenges such as cli-

mate change, soil degradation, and increasing global food demands. In this study, we evaluated soil health, crop yields, and 

greenhouse gas (GHG) emissions at a long- term experimental site in Central Europe that comprised two cropping systems: 

a conventional system with regular tillage, low- diversity crop rotation, and minimal cover cropping, and a conservation 

system with shallow tillage, diverse crop rotation, and extensive cover cropping. We assessed soil health using 13 physico- 

chemical and biological parameters, calculated field- scale GHG emissions, and analysed yield dynamics over an eight- year 

period to evaluate potential crop yield penalties under conservation farming. We observed significant soil health advances 

(+7%) and reductions in GHG emissions (−43%) with conservation farming, while crop yields for all cultivated crops re-

mained stable. Improvements in soil health were particularly pronounced for nitrogen cycling and microbial- driven pro-

cesses. For several measured soil health parameters, we found a larger effect of crop species compared to farming system. 

Further, positive management effects on soil were apparent particularly for winter wheat and to a lesser extent for maize 

and sugar beet, strongly emphasizing the need for standardized soil health assessments that take crop species into account. 

Our study demonstrates that easily implementable conservation farming measures such as reduced tillage, increased crop 

diversity, and enhanced cover cropping can substantially improve soil health and long- term agricultural sustainability with-

out compromising crop yields. Conservation farming thus emerges as a viable strategy to support resilient crop production 

in temperate regions.
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1   |   Introduction

The global population is projected to reach nearly 10 billion 
by 2050, necessitating a significant increase in food produc-
tion to meet rising global demands (FAO  2017). This surge 
in demand poses a challenge for agricultural systems world-
wide, which must not only produce more food but also do so 
sustainably, aligning with climate neutrality targets for ag-
ricultural production. Adverse effects of climate change fur-
ther threaten to decrease agricultural productivity through 
increased frequency and severity of extreme weather events 
such as flooding, droughts, and heatwaves (Lobell et al. 2008; 
Hari et al. 2020).

Soil degradation is another critical issue that undermines the 
capacity of agricultural systems to meet future food demands. 
Conventional farming practices including frequent tillage at 
20–30 cm soil depth, low crop diversity, or crop residue removal 
have led to soil organic matter depletion, erosion, and loss of 
soil fertility (Guo and Gifford  2002; Sanderman et  al.  2017). 
Consequently, these soils exhibit lower water and nutrient re-
tention (Man et al. 2021), making crops more vulnerable to en-
vironmental stressors. Moreover, current agricultural systems 
contribute significantly to greenhouse gas (GHG) emissions, ac-
counting for approximately 25% of global anthropogenic emis-
sions (IPCC 2015). These emissions arise from various sources 
including land- use change, soil management practices, live-
stock production, and the use of synthetic fertilizers. Evidently, 
the high GHG emissions associated with conventional farming 
practices further exacerbate climate change, creating a negative 
feedback loop that further threatens resilience, resistance, and 
hence long- term productivity of agricultural systems (Lobell 
and Gourdji 2012).

Healthy soils are fundamental for agricultural sustainabil-
ity, directly influencing crop productivity and environmental 
quality. They are characterized by high levels of soil organic 
carbon (SOC), stable soil aggregates, and a vital microbial 
community (Bodner et al. 2023; Rosinger, Bodner, et al. 2023), 
all of which contribute to improved soil structure, nutrient cy-
cling, and water retention (Lehmann et al. 2020). These proper-
ties enable soils to support high crop yields while maintaining 
resistance and resilience to environmental stressors such as 
drought, heavy rainfalls, or extreme temperatures. Improving 
soil health is therefore essential for enhancing agricultural 
productivity and sustainability. Practices that increase SOC 
levels, improve soil structure, and promote microbial diversity 

and activity can enhance soil fertility, water retention, and re-
silience to environmental stressors (Amelung et al. 2020).

Conservation farming, which particularly emphasizes min-
imal soil disturbance, increased soil cover, and diversified 
crop rotations, has emerged as a promising approach to im-
prove soil health and crop yields (Hobbs et al. 2008; Sae- Tun 
et al. 2023). Reduced tillage minimizes soil erosion and distur-
bance (Bogunovic et  al.  2018), thus preserving soil structure 
and reducing soil organic matter decomposition. Increased soil 
cover through cover cropping and residue retention protects the 
soil surface from erosion, enhances water infiltration, and re-
duces evaporation, thereby improving soil moisture retention 
(Blanco- Canqui and Ruis  2020). Diversified crop rotations—
including the use of cover and inter crops—can significantly 
enhance soil fertility and reduce pest and disease pressures. 
Leguminous crops—either used as main or cover crop—con-
tribute to soil nitrogen (N) enrichment through atmospheric 
N fixation, thereby reducing the need for mineral fertilizers 
(Preissel et  al.  2015). Additionally, diverse crop rotations can 
break pest and disease cycles, which reduces the reliance on 
chemical pesticides. Numerous (meta- )studies have demon-
strated the benefits of conservation farming for soil health 
(Ghaley et al. 2018; Li et al. 2018; Crystal- Ornelas et al. 2021). 
These improvements in soil health may lead to higher and 
more stable crop yields (Knapp and van der Heijden 2018; Sun 
et  al.  2024), particularly under conditions of environmental 
stress such as drought (Teng et al. 2024).

However, the effects of conservation farming on crop yields are 
not always consistent. Some studies have reported yield reduc-
tions, particularly in the initial years of adoption, as soils tran-
sition from conventional to conservation practices (Pittelkow 
et al. 2015; Ponisio et al. 2015). These yield reductions can be 
attributed to factors such as changes in soil nutrient availability 
(e.g., the immobilization of available N into stable soil organic 
matter) and the time required for soil health improvements to 
manifest. Despite these challenges, the long- term benefits of 
conservation farming for soil health and crop yield are evident 
and make it a valuable strategy to pursue.

While improving soil health and crop yields is crucial for sus-
tainable agriculture, it is equally important to consider the 
broader environmental impacts of farming practices, particu-
larly on GHG emissions. A farming system that achieves good 
soil health and high crop yields but relies on carbon (C)- intensive 
inputs, such as synthetic fertilizers and fossil fuel- based energy, 
may not be sustainable in the long term. Therefore, evaluating 
GHG emissions at larger scales in addition to soil health is essen-
tial to ensure that efforts to improve soil and crop performance 
align with climate change mitigation goals.

Conservation farming has the potential to reduce GHG emis-
sions by enhancing C sequestration in soils while simultaneously 
reducing the reliance on mineral fertilizers and fossil fuel- based 
energy inputs (Lal et al. 2018). For example, reduced tillage can 
decrease soil C losses and lower fuel consumption for field oper-
ations. The use of leguminous cover crops can reduce the need 
for mineral N fertilization, potentially reducing nitrous oxide 
(N2O) emissions from farming systems (Basche et al. 2014). In 
contrast, no- tillage practices have been associated with elevated 

Summary

• Comparison of a conservation and conventional crop-
ping system during eight years.

• Evaluation of soil health, crop yields and field- scale 
carbon footprint.

• Conservation farming increased soil health by 7% 
without compromising crop yields.

• Conservation farming significantly reduced the over-
all carbon footprint by 43%.
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N2O emissions relative to conventional tillage systems (Mei 
et al. 2018). Thus, the overall impact of conservation farming on 
GHG emissions can vary greatly depending on specific manage-
ment practices and local pedo- climatic conditions, necessitating 
a comprehensive assessment of GHG emissions at larger scales 
to identify potential trade- offs and optimize conservation farm-
ing practices for both soil health and climate benefits.

To this end, we compare conventional and conservation farming 
effects on soil health, crop yields and GHG emissions at a long- 
term experimental site in a temperate (Peel et al. 2007) environ-
ment in Central Europe (North- Eastern Austria). Established 
in 2015, the experimental site accommodates two farming sys-
tems: (i) a conventional system, characterized by conventional 
tillage to 25 cm soil depth, a simple crop rotation and very little 
use of cover crops and (ii) a conservation system, characterized 
by shallow tillage at 5 cm soil depth, a diversified crop rotation 
and the extensive use of cover and inter crops. Eight years after 
implementation, we evaluated soil health based on thirteen 
soil physico- chemical and biological parameters, from which 
we derive a soil health index (Andrews et al. 2002; Askari and 
Holden  2015). The CoolFarm (CF)- Tool was used to calculate 
field- scale GHG emissions (Hillier et  al.  2011). These indices 
were complemented by eight- year (2015–2022) data on crop 
yield and aboveground biomass to assess conservation farm-
ing sustainability advances and potential soil health–crop yield 
trade- offs. The concurrent cultivation of all crops of a respective 
crop rotation in each year enables a detailed analysis of yield 
dynamics over an eight- year period, as well as the assessment 
of potential crop- type specific effects on soil health. We hypoth-
esize that a shift towards conservation farming has increased 
soil health, with improvements being independent of the crop 
species currently cultivated on the field. Further, we hypothe-
size soil health advances with conservation farming to occur 
at the expense of crop yields. Finally, we expect conservation 
farming practices to decrease field- scale GHG emissions. This 
comprehensive evaluation aims to provide a better estimate of 
attainable soil health improvements and GHG reduction poten-
tials with conservation farming measures for this important 
production region in Central Europe.

2   |   Materials and Methods

2.1   |   Experimental Setup

The study was conducted at a long- term experimental site of 
BOKU University in Tulln, North- Eastern Austria (48.3117° N, 
16.0442° E, 177 m a.s.l.; Figure 1a–c). The site is characterized by 
a dry- temperate climate with warm summers without a dry sea-
son (Peel et al. 2007), with a mean annual temperature of 10.4°C 
and a mean annual precipitation of 759 mm (Figure 1d). The soil 
is a Chernozem with a loamy clay texture, a neutral pH (6.3–6.8 
in H2O) and SOC concentrations of about 2.5%.

Established in 2015, the experiment features a conventional 
and a conservation farming system. The conservation farming 
system differs from the conventional farming system in three 
main aspects: (i) shallow tillage at 5 cm soil depth as compared 
to conventional tillage at 20–25 cm soil depth using a field cul-
tivator (Horsch Terrano FX with spring roller; wing shares 

for conservation farming system, tines for conventional farm-
ing system), (ii) a wider and more diverse crop rotation (sugar 
beet- winter wheat- maize- soybean- winter wheat- sunflower- faba 
bean- winter wheat with a total of five cover crop mixtures) as 
compared to a conventional crop rotation common for this re-
gion (sugar beet- winter wheat- maize- winter wheat), and (iii) a 
greater share of cover and inter crops (five cover crops and one 
inter crop) as compared to one cover crop in the conventional 
farming system. Fertilization (mainly CAN and urea) was con-
ducted according to national recommendations (BMLRT 2022), 
and conventional plant protection was applied as needed; fer-
tilization and plant protection were however always the same 
in both farming systems. For stubble cultivation and seedbed 
preparation, an S- tine seedbed cultivator was used (Kongskilde 
Vibromaster, Type SGC) and—if needed—combined with a 
prism roller (Lely Power Harrow). Seeding of maize and sun-
flower was conducted using a six- row pneumatic precision seed 
drill (Kverneland Optima); all other crops were sown with a disc 
seed drill (Hirsch Pronto 3–4 DC). For more details on the crop 
rotation, crop yields, cover crop composition, plant protection 
and fertilization regime, we refer the reader to Table S1. The ex-
periment is set up in a Complete Randomized Block Design with 
two real and two pseudo- replicates within each of the individual 
blocks (see Figure 1). Each block is 20 × 160 m, and every crop of 
the entire crop rotation (4 and 8 crops in the conventional and 
conservation farming system, respectively) is cultivated each 
year on two large plots, resulting in a total of 24 plots.

2.2   |   Soil Sampling

Soil samples were taken in June 2024 at two soil depths (0–15 
and 15–30 cm) using a steel soil corer (⌀ 3 cm) from those con-
ventional and conservation farming plots where the same main 
crops were cultivated (i.e., Sbeet, sugar beet; Ww1, winter wheat 
1; Maize; Ww2, winter wheat2). Ww2 differs in the pre- crop, 
with soybean in the conservation farming crop rotation and 
maize in the conventional crop rotation. Five soil cores taken 
along a Z- shaped transect were pooled to form a composite sam-
ple for each plot and pseudo- replicate. Soil samples were sieved 
to pass through 2 mm and subsequently air- dried or stored at 
4°C until further analysis. Laboratory analyses on fresh soil 
samples were conducted within 10 days of soil sampling. This 
resulted in a total of 64 soil samples (two systems × four crops 
× two depths × [two blocks × two pseudo- replicates per block]) 
taken. In addition, undisturbed soil cores using steel cylinders 
with 100 cm3 were taken from each plot for bulk density deter-
mination to calculate SOC and total N (TN) pools.

2.3   |   Aboveground Biomass Sampling and Yield 
Evaluation

Manual harvest of winter wheat and maize was done at physio-
logical maturity by sampling the whole above ground- biomass, 
and for sugar beet when the beet root had reached the harvest-
able size. Winter wheat was harvested in July on an area of 1 
m2, maize and sugar beet in autumn on an area of 7.5 m2. Seeds 
of winter wheat and maize were dried at 105°C for 24 h before 
weighing. For sugar beet, fresh weight was recorded after cut-
ting off leaves.
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FIGURE 1    |     Legend on next page.
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2.4   |   Laboratory Analyses

Soil pH was measured according to ÖNORM L 1083 in a 10:1 
(w/w) suspension of MilliQ- H2O on air- dried soil using an ino-
Lab Multi 9620 IDS electrode.

Total C and N concentrations were determined using a C/N 
elemental analyser (Thermo Fisher Scientific, MA, USA) via 
total combustion of air- dried, ball- milled soil samples and nor-
malized to oven- dry mass. Inorganic C concentrations (calcium 
carbonate- equivalents) were quantified using the Scheibler 
method (ÖNORM L 1084). The SOC concentration was subse-
quently calculated as the difference between total C and inor-
ganic C. SOC and TN pools were calculated using the equivalent 
soil mass approach (Fowler et al. 2023), and results are given in 
Mg ha−1.

The relative number of stable aggregates (AS) was assessed using 
the wet sieving method (ÖNORM L 1082). In this procedure, soil 
aggregates with diameters ranging from 1 to 2 mm were placed 
on a 250 μm sieve. A sample of 4 g (EW) of soil was analysed. The 
mass of stable aggregates remaining after wet sieving (mK) and 
the mass of sand following chemical dispersion of the residual 
aggregates (mA) were measured, and aggregate stability (in %) 
was calculated as follows:

Soil microbial biomass C and N (MB- C and MB- N, respectively) 
were determined using the chloroform- fumigation- extraction 
method (Vance et  al.  1987). Briefly, 2 g of fresh soil was in-
cubated for 22 h in a chloroform- saturated atmosphere, then 
extracted with 1 M KCl (1:10 w/v) by overhead shaking for 1 h. 
The extracts were filtered and stored at −20°C before analysis 
with a TOC/TN analyser (TOC- V CPHE200V, equipped with 
a TN- unit TNM −1, Shimadzu Corporation, Kyoto, Japan). 
Non- fumigated samples were treated identically to determine 
the background concentration of KCl- extractable organic C 
(EOC) and total dissolved N (TDN). MB- C and MB- N concen-
trations were calculated as the difference between fumigated 
and non- fumigated sample concentrations, with extraction ef-
ficiency factors of 0.45 (Vance et al. 1987) and 0.54 (Brookes 
et al. 1985) used for MB- C and MB- N, respectively. Results are 
expressed in μg g−1 dry soil.

The potential activities of six hydrolytic enzymes were deter-
mined using a microplate fluorometric assay following the pro-
tocol of Mayer et  al.  (2022). The enzymes evaluated included 
β- glucosidase (BG), β- xylosidase (XYL) and cellobiohydrolase 
(CEL) as proxies for C- acquisition, leucine- aminopeptidase (LAP) 
and N- acetyl- β- D- glucosaminidase (NAG) as proxies for N- 
acquisition, and acid phosphatase (AP) as a proxy for phosphorus 

(P)- acquisition. For the assay, 0.5 g of fresh soil was suspended in 
50 mL of 100 mM TRIS buffer (adjusted to pH 6.8) and homoge-
nized in a sonication bath for 1 min. While stirring, 200 μL al-
iquots were transferred to black 96- well microplates, with four 
technical replicates per sample. Substrate solutions (50 μL, con-
centrations of 2 mM for AP and 1 mM for all other enzymes) were 
added to each well, horizontally shaken for 30 s, and the plates 
were sealed with a cohesive plastic film. The plates were subse-
quently incubated in the dark at 20°C for 2 h. Fluorescence was 
measured using an EnSpire multiplate reader (PerkinElmer, 
Waltham, MA, USA) at an excitation wavelength of 365 nm and 
an emission wavelength of 450 nm. Methyl- umbelliferon (MU)- 
based substrates (BG, XYL, CEL, NAG, AP) were calibrated with 
standard solutions ranging from 10 to 250 μM, while the amino- 
methyl- coumarin (AMC)- based substrate (LAP) was used at 
two standard concentrations (20 and 50 μM). Quenching was 
accounted for by calculating the slope ratio of standard curves 
(50 μM) in buffer and soil suspension for both AMC-  and MU- 
based substrates for each sample separately. Potential enzyme 
activities are expressed as nmol g−1 dry soil h−1.

Potassium permanganate (KMnO4)- oxidizable C (from here 
on referred to as ‘Oxidizable C') was determined with a ti-
tration of the 0.02 M KMnO4 solution with sodium oxalate 
(Na2C2O4), according to Tatzber et al. (2015). The method was 
based on Weil et al. (2003) with minor modifications (Culman 
et al. 2012). Briefly, 2.5 g air- dried soil sample was used and 
20 mL of a 0.02 M KMnO4 solution was added. Titration, 
needed because KMnO4 is not a primary standard, was per-
formed with Na2C2O4 according to McBride  (1912). Results 
are expressed in μg g−1.

The anaerobic incubation method according to DeLuca 
et  al.  (1992), adapted by Schinner et  al.  (2012), was used to 
determine the N mineralization potential (from here on re-
ferred to as ‘Mineralizable N’) on air- dried soils. Briefly, 
fresh soil samples (5 g) were incubated at 40°C for 7 days in 
a waterlogged environment in a closed tube with little head-
space. The released NH4

+ was measured using the salicylate- 
nitroprusside method (Hood- Nowotny et al. 2010). Results are 
expressed in μg g−1 d−1.

2.5   |   Calculation of the Soil Health Index (SHI)

As a representative measure of soil health, the Soil Health Index 
(SHI) provides a numerical assessment of various soil proper-
ties (Andrews et al. 2002; Zhou et al. 2020). The calculation of 
the SHI involves identifying a Minimum Data Set (MDS), com-
prising selected soil physicochemical and biological soil prop-
erties. These indicators are individually scored and summed to 
produce a final dimensionless value that reflects the overall soil 
health status (Andrews et al. 2002).

(1)AS (%) =
mK −mA

EW −mA

FIGURE 1    |    (a) Location, (b) aerial photo and (c) setup of the farming management experiment in North- Eastern Austria as well as (d) daily 

temperatures and mean annual precipitation from 2015 to 2024. For each management system (yellow, conventional farming; green, conservation 

farming), the crop rotations (CR1 and CR2) are established in duplicate. As such, every crop of the respective crop rotations (conventional rotation: 

Sbeet- Ww1- Maize- W2; conservation rotation: Sbeet- Ww1- Maize- Soybean- Ww2- Sunflower- Faba bean- Ww3) is cultivated twice each year, resulting 

in a total of 24 plots (Sbeet, sugar beet; Ww, winter wheat).
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To calculate the SHI, we employed the Principal Component 
Analysis (PCA) method, as outlined in previous studies (Askari 
and Holden 2015; Martín- Sanz et al. 2022; Ferretti et al. 2024). 
PCA reduces dataset complexity while preserving essential in-
formation by generating uncorrelated principal components 
(PCs) that combine contributions from all original variables. 
These PCs are ranked in descending order of the variance they 
explain (Armenise et  al.  2013). The analysis was conducted 
using thirteen standardized physicochemical and biological 
soil parameters (Table S2) to mitigate the influence of differing 
measurement units among indicators (Yao et al. 2014). The most 
important PCs were selected based on eigenvalues > 1 and an 
explained variance > 5% criterion (Armenise et  al.  2013; Yao 
et al. 2014). Varimax rotation was applied to maximize correla-
tions between PCs and measured attributes before extracting 
factor loadings (Shukla et al. 2006; Ferretti et al. 2024).

To construct the MDS, variables with factor loadings within 10% of 
the highest loading in each PC were selected. When multiple vari-
ables met this criterion, Pearson correlation coefficients were used 
to avoid redundancy. Specifically, if highly weighted variables 
were uncorrelated, all were retained; otherwise, only the variable 
with the highest loading was selected (Andrews et al. 2002; Singh 
et  al.  2014). The finalized MDS was then scored using a linear 
method, assigning values between 0 and 1 based on a ‘the more is 
better’ approach (Equation 2) (Martín- Sanz et al. 2022):

where Ls represents the linear score, X is the measured variable 
value, and Xmin/Xmax are the minimum and maximum values 
of the variable, respectively. The SHI was then calculated fol-
lowing Equation (3) (Martín- Sanz et al. 2022):

where n is the number of variables selected in the MDS, Ls is the 
score derived from the linear scoring method, and Wi represents 
the weight of each indicator, calculated using Equation (4):

Here, %VarPCi is the variance explained by the PC for the indi-
cator i, %VarTotal is the cumulative variance explained by all 
the selected PCs, and n is the total number of selected PCs.

2.6   |   Calculation of the Carbon Footprint

GHG emissions (in kg CO2- eq ha−1) were calculated using the 
CoolFarm Tool v2.11.0 (Hillier et  al.  2011). This tool combines 
several empirical models for the estimation of GHG emissions 
of individual farming management practices such as crop man-
agement, livestock management, and direct energy use from on- 
farm operations or primary processing while taking into account 
pedo- climatic conditions. In particular, site- specific data about 
crop yields and crop residue management, cover crop and inter- 
crop cultivation, fertilizer application, plant protection, energy 

consumption from field operations, and transport of harvested 
crops from the field were used to drive the model, allowing us to 
compare the performance (i.e., land- use efficiency and efficiency 
per unit of product) of the farming systems from a GHG emissions 
perspective. A detailed description of the input variables can be 
found in Table S1. As management data are available for all crops 
and the entire experiment (2015–2022), GHG emissions were cal-
culated for each crop within the respective farming system using 
the average management practices across the eight- year period.

2.7   |   Statistical Analysis

Data were tested for variance homogeneity as well as normal 
distribution and—in the case of any violation—log- transformed 
before further analysis. Differences in aboveground biomass 
and crop yields of maize, sugar beet, winter wheat 1 and winter 
wheat 2 for each individual year as well as across the whole crop 
rotation were evaluated using one- way analysis of variance.

For the tested soil parameters, we first used multivariate anal-
ysis of variance (MANOVA) to test for a potential block effect. 
Therefore, we tested the factors management system, crop type, 
soil depth and block as main effects and interactions between 
block and all other factors (using a SS type III model) on the fol-
lowing soil health- related parameters: (i) SOC and TN (ii) EOC 
and oxidizable C, (iii) TDN and mineralizable N, (iv) MB- C and 
MB- N, (v) potential C- , N-  and P- acquiring enzyme activities, 
and (vi) aggregate stability. Our analysis revealed a significant 
block effect across the whole dataset (Table  S3), yet no signifi-
cant interactions between block and all the other factors were ob-
served. Subsequently, we used MANOVA to evaluate the effects 
of management system (with was as such nested within block), 
crop type and soil depth on our tested soil health- related param-
eters. To evaluate the statistical significance of the overall model, 
the Wilks' lambda distributions (λ) and derived F-  and p- values 
for main and interaction effects are stated. Post hoc Tukey tests 
using a Šidák correction for multiple pairwise comparisons were 
used to evaluate significant differences between crops. The same 
MANOVA approach was followed for the evaluation of the SHI. 
Significant interactions were detected between management 
and crop type. In this case, we used one- way ANOVA to evalu-
ate management differences within each crop type (i.e., Maize, 
Sbeet, Ww1 and Ww2). A Mann–Whitney U test was used to 
test for significant differences in GHG emissions between con-
ventional and conservation farming. All statistical analyses were 
conducted in SPSS 26. We refer to significant differences at the 
p < 0.05 level and marginal differences at the p < 0.1 level.

3   |   Results and Discussion

3.1   |   Conservation Farming Effects on Crop Yield 
and Aboveground Biomass

A key challenge of our time is to feed a growing and increas-
ingly demanding global population while minimizing external 
inputs and environmental impacts, with the additional pres-
sure of current future climate predictions (Lobell et al. 2008; 
Godfray and Garnett 2014). Guided by the three main princi-
ples of minimizing soil disturbance, increasing soil cover, and 

(2)Ls =
X − Xmin

Xmax − Xmin

(3)SHI =

n
∑

i= 1

WiLs

(4)Wi =
(%VarPCi)

(%VarTotal)
∕

n
∑

i= n

%VarPCi

%VarTotal
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diversifying crop rotations (Hobbs et al. 2008), conservation 
agriculture has received strong support as a potential solution 
to this challenge.

As for our study, we did not observe such yield losses with 
conservation farming over the entire experimental period 
(i.e., 2015–2022; Figure 2), thus contrasting earlier reports of 
yield penalties ranging from 5% to 20%, which have been cited 
as a significant barrier to the broader adoption of conservation 
farming practices (Pittelkow et  al.  2015; Ponisio et  al.  2015; 
Knapp and van der Heijden 2018). Significant differences in 
crop yield between conservation and conventional farming 
were however evident for specific years. For example, Sbeet 
yields were significantly higher under conservation farming 
as compared to conventional farming (Figure  2a,d) in 2017 
and 2018, when Central Europe experienced a severe drought 
period (Hari et  al.  2020; Moravec et  al.  2021). This suggests 
that conservation farming practices may have positively af-
fected soil hydraulic properties (i.e., pore size distribution) 
and the overall soil water balance in our experiment, as com-
monly reported for conservation farming systems (Parihar 
et al. 2019; Patra et al. 2019; Bodner et al. 2023). A better resis-
tance of the conservation farming system alongside increased 
yield levels during years of excessive drought (Knapp and van 
der Heijden 2018) may therefore particularly benefit shallow- 
rooting crops with high water demand.

Interestingly, we observed a significantly larger aboveground 
biomass for Ww2 with conservation farming (11.9 ± 0.5 Mg ha−1) 
as compared to conventional farming (11.4 ± 0.5 Mg ha−1) over 
the entire experimental period (Figure  S1). The conservation 
and conventional farming systems differ in one main aspect re-
garding Ww2: while maize is the pre- crop in the conventional 
farming system, soybean is the pre- crop in the conservation 
farming system. While the cultivation of grain legumes usu-
ally entails smaller economic revenues for farmers (Zander 
et al. 2016), they are important constituents of sustainable and 
diverse crop rotations. Aside from soil health benefits such as 
improved soil structure, P mobilization or N provision, crops 
yield 0.5–1.6 Mg ha−1 more after a grain legume pre- crop 
(Kaul  2004; Preissel et  al.  2015). This grain legume pre- crop 
benefit may thus explain the elevated Ww2 aboveground bio-
mass (+0.52 Mg ha−1) in the conservation farming system, 
which did however not translate into significant crop yield in-
creases. We therefore conclude that—contrasting to our first 
hypothesis—conservation farming did not compromise crop 
yields; in fact, we evidenced a greater aboveground biomass of 
a Ww2, likely due to a positive grain legume pre- crop effect.

3.2   |   Conservation Farming Effects on Soil 
Health- Related Indicators

We further evaluated several soil health indicators related 
to soil structure, soil organic matter, and microbially- driven 
C- , N- , and P- cycling (de Vries and Caruso  2016; Lehmann 
et al. 2020). Our results generally reflect the notion of increased 
soil health in conservation farming systems (Li et  al.  2018), 
albeit not for all indicators. Using a MANOVA, we found no 
significant change in SOC as a key soil health indicator with 
conservation farming (Table 1, Figure 3e). This is similar to 

several studies that report inconsistent trends in SOC with 
the adoption of conservation farming practices (Govaerts 
et al. 2009; Crystal- Ornelas et al. 2021), highlighting the im-
portance of specific pedoclimatic conditions and management 
measures that seem particularly beneficial for SOC accrual 
(Crystal- Ornelas et al. 2021; Rosinger, Keiblinger, et al. 2023). 
For example, Page et  al.  (2020) state that SOC gains with 
conservation farming mainly occur under favourable pedo- 
climatic conditions, while a cold and wet climate as well as 
poorly drained soils negatively affect SOC levels. Moreover, 
eight years of conversion may still be considered too short 
to detect management- induced SOC changes on these fine- 
textured soils (Rosinger, Bodner, et al. 2023).

More sensitive indicators of soil health such as oxidizable C or 
MB- C on the other hand were affected by a change in manage-
ment towards conservation farming (Table  1, Figure  3): while 
oxidizable C decreased with conservation farming from 574 ± 8 
to 577 ± 8 μg g−1 (Figure 3b), MB- C concentrations increased with 
conservation farming from 205 ± 7 to 208 ± 8 μg g−1 (Figure 3c). 
While these advances in soil health indicators seem minor com-
pared to literature (Li et al. 2018; Crystal- Ornelas et al. 2021), a 
shift towards conservation farming on fine- textured soils such as 
ours can encompass SOC and crop yield declines (Rusinamhodzi 
et  al.  2011; Das et  al.  2022)—something we did not observe. 
Overall, these results support that management- induced changes 
in C- related soil health indicators are primarily observed in labile 
C fractions for fine- textured soils (Wieser et al. 2024).

Soil health parameters related to N cycling were for the most 
part positively affected under conservation farming (Table 1, 
Figure  3). In particular, TN stocks (+0.9%) as well as labile 
N fractions such as TDN (+9.1%) or MB- N (+6.0%) were sig-
nificantly increased with conservation farming (Table  1, 
Figure 3f,h,j). Higher N contents in the conservation farming 
system might be related to reduced N losses as a result of re-
duced topsoil disturbance from soil tillage (Zhang et al. 2020) 
and/or to the greater share of legume grains and legume- 
containing cover crops in the crop rotation (Bohoussou 
et al. 2022). These management measures have a great poten-
tial to enhance soil N cycling and accumulation, ultimately 
facilitating N supply to crops.

While enzymatic indicators of microbial C-  and N- acquisition 
did not differ between farming systems, potential activities 
of P- acquiring enzymes were significantly lower with con-
servation farming (100 ± 5 nmol g−1 h−1) as compared to con-
ventional farming (111 ± 5 nmol g−1 h−1). This contrasts with 
recent studies (Hallama et al. 2021; Campdelacreu Rocabruna 
et al. 2024), where increased P- acquisition has been reported 
with a high share of cover crops and reduced tillage. In conser-
vation farming systems, the greater share of leguminous plants 
cultivated may have exacerbated rhizosphere acidification, 
possibly facilitating P mobilization from inorganic (adsorbed, 
precipitated) pools and reducing the production of P- acquiring 
enzymes in turn (Haynes 1983; Shen et al. 2011; Muindi 2019). 
If such shifts indicate management- induced changes in soil 
(inorganic) P availability or microbial nutrient limitation 
(Rosinger et al. 2019) remains to be resolved in more targeted 
research that could include measurements of soil P pools and 
gross fluxes (Negassa and Leinweber 2009; Wanek et al. 2019).
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FIGURE 2    |    Crop yield (in Mg ha−1) of (a) winter wheat 1 (Ww1), (b) winter wheat 2 (Ww2), (c) Maize and (d) sugar beet (Sbeet) in a conventional 

(yellow dots and bars) and conservation (green dots and bars) farming system from 2015 to 2022. Standard errors show ± SD, and significant differ-

ences between farming systems within each year are indicated (*p < 0.05; †p < 0.1). Bars on the right- hand side display the average crop yield for all 

eight cropping seasons.
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3.3   |   Soil Depth and Crop Type Effects on Soil 
Health Indicators

Beside the commonly observed decreases in soil health indicators 
with soil depth (Peigné et  al.  2018; Rosinger et  al.  2025) as evi-
denced in this study for oxidizable C, MB- C, TDN, mineralizable 
N as well as MB- N (Table 1, Figure S3), we show here that crop 
type has a highly significant effect on all evaluated soil health 
parameters except for C-  and P- acquisition as well as SOC stocks 
(Table 1, Figure S4). The most striking differences appeared be-
tween Ww1 + Ww2 on the one hand and Maize + Sbeet on the 
other hand. For example, MB- C and MB- N contents, N- acquisition 
and aggregate stability were significantly higher on Ww1 + Ww2 
plots as compared to Maize + Sbeet plots, with differences ap-
proximating up to 60%–70%, while the opposite trend was found 
for EOC concentrations (Figure  S4a). In addition, we observed 
significant differences between Ww1 and Ww2 for oxidizable C, 
MB- C, TDN and mineralizable N, which could be attributed to the 
different pre- crop (Sbeet vs. soybean) these two crops have experi-
enced. Beside these strong main effects of crop type on soil prop-
erties, we also evidenced significant interactions between crop 
type and management system (Table  1). MB- C concentrations 
were significantly increased in Ww2 and Maize plots of the con-
servation farming system, yet significantly decreased in the Sbeet 
plot (Figure 4a). MB- N concentrations were significantly higher 
in Ww1 and Ww2 under conservation farming as compared to 
conventional farming, while no management effect was observed 
for Maize and Sbeet (Figure 4c). TDN concentrations were higher 

in Maize plots under conservation farming as compared to con-
ventional farming (Figure 4b). Conversely, P- acquisition tended to 
be greater in conventional farming systems under winter wheat 
(Ww1 and Ww2), while the opposite trend was found for Maize 
and Sbeet (Figure 4d). While such crop- specific effects of conserva-
tion farming have been observed for crop yields (Zheng et al. 2014; 
Sun et  al.  2024) as well as soil health parameters (Thierfelder 
et  al.  2013; Larney et  al.  2016; Sadiq et  al.  2021), this is to our 
knowledge the first study that allows for a management compar-
ison of different crops within the same vegetation period. While 
these interactions must be related to crop- specific traits such as 
root morphology or nutrient demand (Li et al. 2014), they remain 
after all challenging to interpret. Further studies are required to 
decipher the specific mechanisms of these crop- specific manage-
ment effects on particular soil biochemical properties. In addition, 
these interactions evidently constitute an important finding with 
major implications for soil health assessment and the evaluation of 
soil health- oriented farming systems. Given this strong crop effect 
even on less dynamic soil parameters such as TN (Table 1), we pro-
pose that future on- site comparisons of different farming systems 
must ensure identical crops on the respective fields or plots.

3.4   |   Conservation Farming Effects on the Soil 
Health Index

In the next step, we evaluated conservation farming advances 
by deriving a soil health index from the measured soil health 

TABLE 1    |    Results of a MANOVA on the effect of management, soil depth and crop type (as well as interactions thereof) on soil health- related 

parameters.

Management Soil depth Crop type

Management 

× Crop type

Management 

× Soil depth

Management 

× Crop type 

× Soil depth

Wilk's λ 0.117 0.068 0.010 0.131 0.609 0.126

F- value 5.601 39.711 10.673 2.860 1.872 1.265

p- value < 0.001 < 0.001 < 0.001 < 0.001 0.074 0.105

SOC n.s. n.s. n.s. n.s. n.s. n.s.

TN *** n.s. * n.s. n.s. n.s.

MB- C * *** *** * * n.s.

MB- N *** ** *** * n.s. **

Mineralizable N n.s. *** *** n.s. n.s. n.s.

Oxidizable C * *** *** n.s. n.s. n.s.

Aggregate stability *** n.s. *** ** n.s. n.s.

N- acquisition n.s. n.s. *** n.s. n.s. n.s.

C- acquisition n.s. n.s. n.s. n.s. n.s. n.s.

P- acquisition *** * n.s. * n.s. n.s.

EOC n.s. n.s. *** n.s. n.s. n.s.

TDN * *** *** * n.s. n.s.

Note: Wilk's λ, F-  as well as p- values refer to the overall model performance, and significant effects on single parameters are indicated below (***p < 0.001; **p < 0.01; 
*p < 0.05; n.s., not significant).
Abbreviations: EOC, extractable organic carbon; MB- C, microbial biomass carbon; MB- N, microbial biomass nitrogen; SOC, soil organic carbon; TDN, total dissolved 
nitrogen; TN, total nitrogen.
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indicators (Ferretti et al. 2024). The most important PCs were 
selected based on eigenvalues > 1. As for our dataset, the first 
four dimensions of the PCA had eigenvalues > 1 (3.56, 2.42, 

1.78 and 1.31) and together explained 69.77% (27.36%, 18.62%, 
13.68% and 10.11% for PCs 1–4, respectively) of the total 
variation within the dataset (Table  S2). The most important 

FIGURE 3    |    Conservation farming effects on soil health parameters related to (a–e) C cycling, (f–j) N cycling, (k) P cycling and (l) aggregate stabil-

ity. Given is the mean ± SD, and asterisks above bars indicate significant differences between management systems (*p < 0.05; **p < 0.01; ***p < 0.001) 

as revealed by multivariate analysis of variance.
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variable in each PC by means of loading was MB- N, miner-
alizable N, SOC and P- acquisition for PCs 1–4, respectively 
(Table  S2), implying that parameters particularly related to 
soil N- cycling seem to be important indicators for manage-
ment change (Teng et al. 2024).

For these variables, weights of 0.392, 0.267, 0.196, and 0.145 (for 
MB- N, mineralizable N, SOC and P- acquisition, respectively; 
Figure 5b) were used in order to calculate a final SHI for each 
sample. The ensuing MANOVA revealed significant soil health 
gains with a shift towards conservation farming (Figure 5a,c). 
The soil health index increased significantly by 6.84% (from 
0.26 ± 0.02 to 0.28 ± 0.02), which is on the lower end of previ-
ously reported soil health gains through conservation farming 
(Das et al. 2021; Roy et al. 2022; Yang et al. 2024). Evidently, 
more dramatic changes in management, for example, a shift 
from conventional to no tillage or from monocropping towards 
highly diverse crop rotations, induce stronger responses in 
soil health. For example, several studies reported soil health 
improvements of 30%–50% with no- till (Hussain et  al.  1999; 
Raiesi and Kabiri 2016; Roy et al. 2022) or a diversified crop 
rotation (Yang et al. 2024). Contrary to previous approaches, 
our study specifically aimed at testing a viable alternative to 

conventional farming that can be easily implemented in terms 
of soil cultivation, cover cropping, and marketing of the culti-
vated crops (as opposed to more severe management changes 
such as no- till or organic farming). As such, it is not surpris-
ing that the obtained advances in soil health are rather low. 
Moreover, fine- textured soils are less sensitive to changes in 
management as compared to coarse- textured soils (Rosinger, 
Bodner, et al. 2023), thus often exhibiting a lagged response.

Like trends observed for individual soil health- related param-
eters, the SHI was strongly affected by crop type (Figure 5a,c). 
Both Ww1 and Ww2 (0.33 ± 0.03 on average) exhibited a sig-
nificantly higher SHI as compared to Maize (0.20 ± 0.02) and 
Sbeet (0.23 ± 0.02). While we recognized overall declines 
in SHI from topsoil to deeper soil layers, these reductions 
were—upon closer inspection—only observed for Ww1 and 
Ww2 (Figure 5a) probably owed to differences in root distribu-
tion and architecture. This reinforces the importance of crop 
type as a superior modifier of soil health- related parameters 
such as MB- C and MB- N, N- acquisition, or aggregate stability 
(Figure S4) over farming management, an aspect that requires 
particular consideration for future soil health assessments of 
farming systems.

FIGURE 4    |    Conservation farming effects on (a) MB- C, (b) TDN, (c) MB- N and (d) P- acquisition within each individual crop type (Maize; Sbeet, 

sugar beet; Ww1, winter wheat 1; Ww2, winter wheat 2). Given is the mean ± SD, and asterisks above bars indicate significant differences between 

management systems (*p < 0.05; **p < 0.01; ***p < 0.001) within each crop as revealed by one- way ANOVA.
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3.5   |   Conservation Farming Effects on GHG 
Emissions

While soil health and crop yields are key indicators of pro-
ductivity, assessing GHG emissions at the field scale provides 
a broader view of environmental impact, assuring that ef-
forts to improve soil and crop performance through conser-
vation farming align with climate change mitigation goals 
(IPCC 2015). Here, we used the CF Tool to evaluate whether 
a shift towards conservation farming induced reductions in 
GHG emissions (Hillier et  al.  2011). Along with the realized 
soil health advances, conservation farming also led to a signifi-
cant reduction in GHG emissions: while the conventional farm-
ing system emitted 1681 ± 72 kg CO2- eq ha−1, the conservation 
farming system could reduce GHG emissions to 959 ± 256 kg 
CO2- eq ha−1 (p = 0.003; Figure 6b); this constitutes a GHG re-
duction potential of 43.4%, which is well in line with poten-
tial indicated in corresponding literature (Huang et  al.  2018; 
Shakoor et al. 2022; Yang et al. 2024). The largest savings in 
GHG emissions could be achieved with reduced soil tillage 
(−222 kg CO2- eq ha−1 or 33.3%) and reduced expenses for fertil-
izer production (−121 kg CO2- eq ha−1 or 30%) as a consequence 
of the diversified crop rotation (Figure 5a). Here, the cultivation 

of soybean and faba bean in particular reduced the overall use 
of mineral fertilizer, either directly or indirectly, via the posi-
tive pre- crop N effect suggested for leguminous crops (Guinet 
et  al.  2020). On the other hand, the overall greater share of 
cover and inter crops weighed negatively on GHG emissions of 
the conservation farming system (Figure 5a); here, emissions 
increased by 204 kg CO2- eq ha−1 or 84% in the conservation 
farming system. This increase can be explained by modelled 
N2O emissions of legume- based cover crops inherent to the 
CF Tool (Schipanski et al.  2024). Although the cultivation of 
cover crops in arable systems has been associated with in-
creased N2O emissions (Matthews et al. 2025), the assumption 
that legume- based cover crops invariably increase N2O emis-
sions has recently been questioned. Several field studies have 
instead reported negligible or even positive effects of legume 
cover crops on overall N2O balances (Basche et al. 2014; Sanz- 
Cobena et al. 2014; Muhammad et al. 2019). Apparently, min-
eral N fertilization results in sudden N2O peaks and was found 
to outweigh legume- based cover cropping in its N2O emission 
potential (Peyrard et al. 2016); thus, substituting N supply from 
mineral fertilization by legume- based cover cropping may 
contribute favourably to overall GHG emissions (Tribouillois 
et al. 2015). Legume- based cover cropping in combination with 

FIGURE 5    |    (a) The effect of agricultural management (conservation vs. conventional), crop type (Maize; Sbeet, sugar beet; Ww1, winter wheat 

1; Ww2 winter wheat 2) and soil depth (0–15 and 15–30 cm) on the soil health index. Given is the mean ± SD, and different letters above or beside 

bars indicate significant differences (p < 0.05) revealed by analysis of variance; (b) explained variance of the four parameters used for the soil health 

assessment as revealed by principal component analysis; (c) results of a multivariate analysis of variance to evaluate the effect of management, soil 

depth and crop type as well as interactions thereof. Main effects are shown in (a) on the right- hand side.
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other sustainable farming management practices such as crop 
residue retention or reduced tillage results in N immobiliza-
tion over autumn and better remobilization in spring for the 
subsequent crop and may thus further ensure sustainability 
advances within conservation farming systems (Frimpong and 
Baggs 2010).

In line with this notion, the incorporation of faba bean and soy-
bean into the crop rotation had a strong positive effect on the 
conservation farming systems overall GHG emissions, since 
these legume crops showed a negative net balance on GHG 
emissions (−163.7 and −190.7 kg CO2- eq ha−1 for faba bean and 
soybean, respectively; Figure 6c). This renders legume crops not 
only an important measure for N supply, but also for the overall 
environmental impact of farming systems as such (Matthews 
et al. 2025).

When using the CF Tool, certain potential shortcomings and 
inaccuracies need to be recognized. Model- based plot- scale es-
timates of GHG emissions may not accurately depict real- world 
GHG emissions from the field. For example, given our current 
understanding, the proposed effect of cover cropping on GHG 
emissions, particularly N2O emissions, requires reassessment 
and should be fine- tuned to site-  and management- specific char-
acteristics which mainly determine whether cover crops facili-
tate or mitigate N2O emissions. According to the methodology 
outlined by the IPCC's Guidelines for National Greenhouse Gas 
Inventories in 2006, C dynamics in the applied model are lim-
ited to a 20- year timeframe, which results in a sharp increase 
in calculated GHG emissions after the 20- year period. Although 
not relevant in our case study, soil texture differences and or-
ganic fertilization are inherently important metrics strongly 
shaping the projected GHG emissions with the CF Tool. To 

FIGURE 6    |    GHG emissions (in kg CO2- eq ha−1) of a conservation and a conventional farming system for a whole crop rotation period (8 years) for 

(a) each individual sector, (b) for the whole management system and (c) for each individual crop in the respective farming system (Sbeet, sugar beet; 

Ww, winter wheat). Given is the mean ± SD, and different letters above bars in (b) indicate significant differences (p < 0.05) between management 

systems as revealed by the Mann–Whitney U test.
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comprehensively evaluate long- term advances in soil health 
and crop production with conservation farming, future studies 
should integrate not only the global warming potential via field- 
level measurements of GHG fluxes but also additional environ-
mental impacts, for example through comprehensive life cycle 
assessment approaches (Goglio et al. 2015).

In addition, the financial sustainability of conservation systems 
deserves attention, particularly with respect to the marketability 
of specific crops within diversified rotations. The cultivation of 
less commonly grown crops not only faces limited market op-
portunities but may also involve additional management chal-
lenges and—subsequently—an inherent risk of yield reductions. 
These agronomic and economic factors together represent po-
tential barriers to the long- term adoption of conservation farm-
ing (Scopel et al. 2013).

4   |   Conclusion

Our comprehensive analysis revealed significant soil health ad-
vances and reduced GHG emissions with the adoption of conser-
vation farming measures without compromising crop yields. Yield 
levels remained virtually unchanged over the initial 8- year exper-
imental period, with higher Sbeet yields in the drought years of 
2017 and 2018 indicating a more resilient crop production with 
conservation farming under drought. The observed soil health im-
provements with conservation farming were particularly evident 
for parameters related to soil N rather than C cycling and to dy-
namic, microbial- related properties such as MB- C or - N as well as 
P- acquisition. For several commonly measured soil health param-
eters, we found a larger effect of crop species compared to farm-
ing system. This, together with the observed crop type- dependent 
management effects, implies that soil health assessments must 
guarantee similar crops on the plots/field to be compared.

Easily implementable measures such as reduced tillage, greater 
crop diversity and an increased share of cover crops inherit a 
great potential to advance farming systems in temperate crop-
ping regions, with inherent soil health improvements through 
conservation farming representing a key adaptation and miti-
gation strategy against the negative effects of climate change to 
warrant future crop production.
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Supporting Information

Additional supporting information can be found online in the 
Supporting Information section. Figure S1: Aboveground biomass (in 
Mg ha−1) of (a) winter wheat 1 (Ww1), (b) winter wheat 2 (Ww2), (c) 
maize and (d) sugar beet (Sbeet) in a conventional (yellow dots and bars) 
and conservation (green dots and bars) farming system from 2015 to 
2022. Standard errors show ± SD, and significant differences between 
farming systems within each year are indicated (*p < 0.05; †p < 0.1). 
Bars on the right- hand side display the average aboveground biomass 
across all eight years, and different letters above bars indicate signifi-
cant differences (p < 0.05) between management systems. Figure S2: 
Aboveground biomass (green dots) and crop yield (red dots) of (a) sun-
flower (b) soy bean and (c) faba bean (in Mg ha−1) in the conservation 
farming system from 2015 to 2022. Shown is the mean ± SD. Figure S3: 
Soil health parameters related to (a–e) C cycling, (f–j) N cycling, (k) P cy-
cling and (l) aggregate stability at two soil depths (0–15 and 15–30 cm). 

Given is the mean ± SD, and asterisks above bars indicate significant 
differences between soil depths (*p < 0.05; **p < 0.01; ***p < 0.001) as 
revealed by multivariate analysis of variance. Figure S4: Soil health 
parameters related to (a–e) C cycling, (f–j) N cycling, (k) P cycling and 
(l) aggregate stability for four different crops (Maize; Sbeet, sugar beet; 
Ww1, winter wheat 1; Ww2, winter wheat 2) across both management 
systems and soil depths. Given is the mean ± SD, and different letters 
above bars indicate significant differences between crop types (p < 0.05) 
as revealed by post hoc Tukey tests within the multivariate analysis of 
variance. Table  S2: Variable loadings on the first four rotated prin-
cipal components (RC) and communalities (h2) extracted from the 
PCA of the conservation and conventional farming system. Variables 
selected for the minimum dataset after checking for autocorrelations 
and redundancy are highlighted in bold. Table S3: Test statistics of the 
MANCOVA analysis to evaluate the effect of management (conserva-
tion vs. conventional), crop type (Ww1, Ww2, Maize, Sbeet), soil depth 
(0–15 cm, 15.30 cm) and block as well as the interactions between block 
and the other three variables (n = 64). Given is the Wilks' lambda as well 
as F-  and p- values. Table S1: Management information for the conven-
tional and the conservation farming system from 2015 to 2022. Given 
are details on crop management (rotation, yield, crop residue man-
agement), fertilization (type and amount), plant protection (type and 
amount), energy consumption for field operations (process, fuel use) 
and transport of harvested crops. 
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Zahlungsfrist: binnen 8 Tagen ohne Abzug zur Zahlung fällig

Bei Überweisung per Telebanking bitte die Nummer der Rechnung in das Feld "Zahlungsreferenz"eingeben!

Es gelten die Allgemeinen Geschäftsbedingungen der Österreichischen Agentur für Gesundheit und Ernährungssicherheit  GmbH.

Österreichische Agentur für Gesundheit und Ernährungssicherheit GmbH | Spargelfeldstraße 191| 1220 Wien  | ÖSTERREICH
www.ages.at | Registergericht: Handelsgericht Wien | Firmenbuch: FN 223056z  | UID Nr.: ATU 54088605
BAWAG P.S.K AG  | IBAN: AT85 6000 0000 9605 1513 | BIC/SWIFT: BAWAATWW
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Geschäftsfeld Ernährungssicherung
Institut für Nachhaltige Pflanzenproduktion

Rechnung: 10473497

Leistungsumfang

Nr. Anzahl Bezeichnung Einzelprei

s

Preis Ust % Rabatt %

1004540 64,00  NNL-nachlieferbarer Stickstoff      15,20       972,80 20,00   20,00   

1004745 64,00  ermäßigte Probenvorbereitung Boden       5,30       339,20 20,00           

1006280 64,00  Bestimmung von Kaliumpermanganat

oxidierbarem

Kohlenstoff  (POXC) von Böden

     12,50       800,00 20,00   20,00   

Netto      2.112,00

Rabatt       -354,56

Betrag      1.757,44         

Österreichische Agentur für Gesundheit und Ernährungssicherheit GmbH | Spargelfeldstraße 191| 1220 Wien  | ÖSTERREICH
www.ages.at | Registergericht: Handelsgericht Wien | Firmenbuch: FN 223056z  | UID Nr.: ATU 54088605
BAWAG P.S.K AG  | IBAN: AT85 6000 0000 9605 1513 | BIC/SWIFT: BAWAATWW

2 von 2   



IC-Verrechnung 10021443

05.12.2024Rechnungsdatum:

Kundennummer: 38000013

Bestellnummer: 7951015912

142925Auftragsnummer:

Leistungszeitraum: 01.07.2024 - 01.10.2024

Sachbearbeiter/in: Nina Holler

Email: nina.holler@boku.ac.at

Interne Projektnummer:   7911004815

Ihre UID-Nummer: ATU16285008

H951 Institut für Pflanzenbau

Dr. Christoph Rosinger

Konrad-Lorenz-Straße 24

UFT

3430 Tulln

Österreich

Bezeichnung Menge Einheit USt % Preis/EH Betrag/EUR

Karbonatgehalt (á 0,30 €) an 32 Boden-            1,000  0            931,20            931,20 

proben
Messung von KCI-Extrakten am TOC/TN-Analyser (á 4,30 €) an 128 Bodenproben
Messung von potentieller Enzymaktivität (á 5,80 €) an 64 Bodenproben

z

Positionssumme               931,20 

Umsatzsteuer 0%              0,00 

Rechnungsbetrag EUR               931,20 

Zahlungsbedingungen:

sofort zahlbar ohne Abzug

Zahlen mit Code

Die Universität für Bodenkultur Wien leistet im Zusammenhang mit diesem Geschäftsfall nach nationalem österreichischen Recht als

hoheitliche Forschungsanstalt des Bundes und weist daher keine Umsatzsteuer aus. Liegt der Leistungsort außerhalb Österreichs,

so hat der Empfänger für sein Empfängerland selbst allfällige umsatzsteuerliche Verpflichtungen wahrzunehmen.

Vertreten durch:

Bodenforschung

Peter-Jordan-Straße 82

1190 Wien

Tel.: +43 1 47654-91100

www.boku.ac.at

Hauptsitz:

Universität für Bodenkultur Wien

Gregor Mendel-Straße 33

A-1180 Wien

Es gelten unsere AGB.

www.agb.boku.ac.at

Bankverbindung:

Raiffeisenlandesbank NÖ-Wien AG

IBAN: AT59 3200 0091 0050 0512

BIC/SWIFT: RLNWATWW

UID: ATU16285008

EORI: ATEOS1000081383

DVR: 0059234



 



IC-Verrechnung 10021442

05.12.2024Rechnungsdatum:

Kundennummer: 38000013

Bestellnummer: 7951015912

142924Auftragsnummer:

Leistungszeitraum: 01.07.2024 - 01.10.2024

Sachbearbeiter/in: Nina Holler

Email: nina.holler@boku.ac.at

Interne Projektnummer:   2951000003

Ihre UID-Nummer: ATU16285008

H951 Institut für Pflanzenbau

Dr. Christoph Rosinger

Konrad-Lorenz-Straße 24

UFT

3430 Tulln

Österreich

Bezeichnung Menge Einheit USt % Preis/EH Betrag/EUR

Extraktion von Bodenproben in 1M KCI            1,000  0          1.017,60          1.017,60 

(á 1,40 €) an 128 Proben
Messung von Gesamtkohlenstoff und -stickstoff (á 13,10 €) an 64 Proben

z

Positionssumme             1.017,60 

Umsatzsteuer 0%              0,00 

Rechnungsbetrag EUR             1.017,60 

Zahlungsbedingungen:

sofort zahlbar ohne Abzug

Zahlen mit Code

Die Universität für Bodenkultur Wien leistet im Zusammenhang mit diesem Geschäftsfall nach nationalem österreichischen Recht als

hoheitliche Forschungsanstalt des Bundes und weist daher keine Umsatzsteuer aus. Liegt der Leistungsort außerhalb Österreichs,

so hat der Empfänger für sein Empfängerland selbst allfällige umsatzsteuerliche Verpflichtungen wahrzunehmen.

Vertreten durch:

Pflanzenbau

Konrad-Lorenz-Straße 24

3430 Tulln

Tel.: +43 1 47654-95100

www.boku.ac.at

Hauptsitz:

Universität für Bodenkultur Wien

Gregor Mendel-Straße 33

A-1180 Wien

Es gelten unsere AGB.

www.agb.boku.ac.at

Bankverbindung:

Raiffeisenlandesbank NÖ-Wien AG

IBAN: AT84 3200 0010 0050 0512

BIC/SWIFT: RLNWATWW

UID: ATU16285008

EORI: ATEOS1000081383

DVR: 0059234



 



Kostenart Kostenartenbezeichn. Konto 
Gegenbuchung

Bezeichnung des Gegenkontos Kostenartenbeschr. Personal-
nummer

Name des Mitarbeiters Geschäfts-
jahr

Wert/BWähr Belegdatum

790991 Aufwand IC KoErs §27 38000012 H101 Büro des Rektorats Aufwand IC Kostenersätze §27 0 2025 974.71 30.09.2025

790911 Aufwand IC B-§27 vv 38000013 H951 Institut für Pflanzenbau Aufwand IC Bund-§27 (vv) 0 2024 1,017.60 05.12.2024

790970 Aufwand IC §27-§27 38000035 H911 Inst. für Bodenforschung Aufwand IC §27-§27 0 2024 931.20 05.12.2024

753000 Sonst. Dienstleist. 30005425 Österreichische Agentur für Sonstige Dienstleistungen 0 2024 2,108.93 21.11.2024

644852 §27 KV DGB MVK wP 367000 VK Auszahlung Angestellte §27 KV - DGB MVK wissensch. 80017791 Gotthalmseder Golo 2024 23.23 15.10.2024

644000 §27 KV Bez. w. Pers. 367000 VK Auszahlung Angestellte §27 KV - Bezüge wissenschaft 80017791 Gotthalmseder Golo 2024 1,518.59 15.10.2024

644837 §27 KV DGB PenK wP 367000 VK Auszahlung Angestellte §27 KV - DGB Pens.Kass. wiss 80017791 Gotthalmseder Golo 2024 46.69 15.10.2024

644805 §27 KV DGB FLAF wP 367000 VK Auszahlung Angestellte §27 KV - DGB FLAF wissensch. 80017791 Gotthalmseder Golo 2024 56.19 15.10.2024

644820 §27 KV DGB SozV wP 367000 VK Auszahlung Angestellte §27 KV - DGB Soz.Vers. wisse 80017791 Gotthalmseder Golo 2024 303.19 15.10.2024

677000 U-Bahnsteuer 367000 VK Auszahlung U-Bahnsteuer 80017791 Gotthalmseder Golo 2024 10.00 15.10.2024

790901 Aufwand IC Fuhrpark 38000014 H173 Facility Services Aufwand IC Fuhrpark 0 2024 17.52 07.10.2024

644000 §27 KV Bez. w. Pers. 367000 VK Auszahlung Angestellte §27 KV - Bezüge wissenschaft 80017791 Gotthalmseder Golo 2024 1,949.40 15.09.2024

644852 §27 KV DGB MVK wP 367000 VK Auszahlung Angestellte §27 KV - DGB MVK wissensch. 80017791 Gotthalmseder Golo 2024 29.83 15.09.2024

644805 §27 KV DGB FLAF wP 367000 VK Auszahlung Angestellte §27 KV - DGB FLAF wissensch. 80017791 Gotthalmseder Golo 2024 72.13 15.09.2024

644837 §27 KV DGB PenK wP 367000 VK Auszahlung Angestellte §27 KV - DGB Pens.Kass. wiss 80017791 Gotthalmseder Golo 2024 59.94 15.09.2024

677000 U-Bahnsteuer 367000 VK Auszahlung U-Bahnsteuer 80017791 Gotthalmseder Golo 2024 10.00 15.09.2024

644820 §27 KV DGB SozV wP 367000 VK Auszahlung Angestellte §27 KV - DGB Soz.Vers. wisse 80017791 Gotthalmseder Golo 2024 385.63 15.09.2024

677000 U-Bahnsteuer 367000 VK Auszahlung U-Bahnsteuer 80017791 Gotthalmseder Golo 2024 8.00 15.08.2024

644000 §27 KV Bez. w. Pers. 367000 VK Auszahlung Angestellte §27 KV - Bezüge wissenschaft 80017791 Gotthalmseder Golo 2024 1,299.60 15.08.2024

644820 §27 KV DGB SozV wP 367000 VK Auszahlung Angestellte §27 KV - DGB Soz.Vers. wisse 80017791 Gotthalmseder Golo 2024 261.29 15.08.2024

644852 §27 KV DGB MVK wP 367000 VK Auszahlung Angestellte §27 KV - DGB MVK wissensch. 80017791 Gotthalmseder Golo 2024 19.88 15.08.2024

644805 §27 KV DGB FLAF wP 367000 VK Auszahlung Angestellte §27 KV - DGB FLAF wissensch. 80017791 Gotthalmseder Golo 2024 48.09 15.08.2024

644837 §27 KV DGB PenK wP 367000 VK Auszahlung Angestellte §27 KV - DGB Pens.Kass. wiss 80017791 Gotthalmseder Golo 2024 39.96 15.08.2024

644000 §27 KV Bez. w. Pers. 367000 VK Auszahlung Angestellte §27 KV - Bezüge wissenschaft 80017791 Gotthalmseder Golo 2024 1,299.60 15.07.2024

677000 U-Bahnsteuer 367000 VK Auszahlung U-Bahnsteuer 80017791 Gotthalmseder Golo 2024 8.00 15.07.2024

644837 §27 KV DGB PenK wP 367000 VK Auszahlung Angestellte §27 KV - DGB Pens.Kass. wiss 80017791 Gotthalmseder Golo 2024 39.96 15.07.2024

644805 §27 KV DGB FLAF wP 367000 VK Auszahlung Angestellte §27 KV - DGB FLAF wissensch. 80017791 Gotthalmseder Golo 2024 48.09 15.07.2024

644852 §27 KV DGB MVK wP 367000 VK Auszahlung Angestellte §27 KV - DGB MVK wissensch. 80017791 Gotthalmseder Golo 2024 19.88 15.07.2024

644820 §27 KV DGB SozV wP 367000 VK Auszahlung Angestellte §27 KV - DGB Soz.Vers. wisse 80017791 Gotthalmseder Golo 2024 261.29 15.07.2024

644000 §27 KV Bez. w. Pers. 367000 VK Auszahlung Angestellte §27 KV - Bezüge wissenschaft 80017791 Gotthalmseder Golo 2024 1,513.84 15.06.2024

644837 §27 KV DGB PenK wP 367000 VK Auszahlung Angestellte §27 KV - DGB Pens.Kass. wiss 80017791 Gotthalmseder Golo 2024 46.55 15.06.2024

644805 §27 KV DGB FLAF wP 367000 VK Auszahlung Angestellte §27 KV - DGB FLAF wissensch. 80017791 Gotthalmseder Golo 2024 56.01 15.06.2024

644820 §27 KV DGB SozV wP 367000 VK Auszahlung Angestellte §27 KV - DGB Soz.Vers. wisse 80017791 Gotthalmseder Golo 2024 302.28 15.06.2024

677000 U-Bahnsteuer 367000 VK Auszahlung U-Bahnsteuer 80017791 Gotthalmseder Golo 2024 10.00 15.06.2024

430000 Erlöse ForschFörder 30027700 BIOS Science Austria Erlöse aus Forschungsförderung 0 2024 -16,411.26 08.04.2024

-1,614.16



Buchungsdatum Ausgleichs-
datum

Bezeichnung

30.09.2025 30.09.2025 Kostenersatz 2024 7951015912

05.12.2024 10.12.2024 Extraktion von Bodenproben in 1M KCI

05.12.2024 10.12.2024 Karbonatgehalt (á 0,30 €) an 32 Boden-

26.11.2024 28.11.2024 Bodenuntersuchungen IFA Tulln

15.10.2024 D UM UN

15.10.2024 D UM UN

15.10.2024 D UM UN

15.10.2024 D UM UN

15.10.2024 D UM UN

15.10.2024 D UM UN

07.10.2024 08.10.2024 78332,W-64627C,ROSINGER,02.07.24-
02.07.24,6km

15.09.2024 D UM UN

15.09.2024 D UM UN

15.09.2024 D UM UN

15.09.2024 D UM UN

15.09.2024 D UM UN

15.09.2024 D UM UN

15.08.2024 D UM UN

15.08.2024 D UM UN

15.08.2024 D UM UN

15.08.2024 D UM UN

15.08.2024 D UM UN

15.08.2024 D UM UN

15.07.2024 D UM UN

15.07.2024 D UM UN

15.07.2024 D UM UN

15.07.2024 D UM UN

15.07.2024 D UM UN

15.07.2024 D UM UN

15.06.2024 D UM UN

15.06.2024 D UM UN

15.06.2024 D UM UN

15.06.2024 D UM UN

15.06.2024 D UM UN

08.04.2024 08.04.2024 1. Rate
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